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In this paper, planar interception laws for maneuvering targets with known trajectories are presented. Opti-
mal interception problems are defined, which include constraints on the initial and final flight-path angles of the
interceptor. For cases where the initial flight-path angle can be freely assigned, it is included in the optimization
problem. Analytical solutions for the planar interception problems are derived. Numerical examples that demon-
strate the optimal trajectories are presented showing also the effect of the interceptor initial flight-path angle on
the interception characteristics. It is shown that when the interceptor initial conditions can be optimized superior
performance is obtained.

I. Introduction

E XTENSIVE work has been done on guidance laws for inter-
cepting maneuvering targets. The classical proportional nav-

igation law gives best results against nonmaneuvering targets.1'2
In other cases, such as accelerating targets, proportional naviga-
tion may give poor performance. Linear optimal control theory was
used to derive guidance laws that better treat maneuvering targets.3'4
This approach is adequate for the terminal guidance phase, where
the interceptor and target are moving close to collision course.

Singular perturbation theory was used to find approximate solu-
tions for the nonlinear guidance problem.5"7 The method separates
slow and fast dynamics, resulting in low-order suboptimal solutions.

An optimal solution to the guidance problem for a maneuvering
target, using exact nonlinear equations of motion in relative po-
lar coordinates, was derived in Ref. 8. The work assumed constant
interceptor speed, fixed initial and free final interceptor flight direc-
tions, perfect knowledge of the maneuvering target behavior, and
a cost function that combines interception time and maneuvering
energy expenditure. In Ref. 9, minimum-time trajectories used as
time-to-go algorithms for a missile controlled by a linear quadratic
guidance law were developed and the same guidance problem but
for a nonmaneuvering target was considered. Using relative carte-
sian coordinates for the equations of motion, results were obtained
for the fixed initial and free final interceptor flight-path directions.

The previously obtained analytical solutions can be applied to
problems where the target behavior can be predicted or when contin-
uous update of the guidance parameters, based on the updated target
model, can be implemented. A typical example is the intercept of a
ballistic missile in the boost phase, in which the target model can be
estimated and its future behavior is predictable. Another example is
midcourse guidance for long-range air-to-air missiles. The purpose
of the midcourse guidance in this case is to bring the missile in
an energy-efficient way to within a close distance from the target,
where a terminal guidance phase starts.

In some cases the final approach direction may have preferred
values for which higher hit probabilities are obtained. In Ref. 10,
the interception problem of nonmaneuvering targets with terminal
constraints is presented; however, the assumption that the target
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velocity and flight-path angle are constant is imbeded into the so-
lution and thus cannot be extended to the maneuvering target case.
Furthermore, if the interceptor can be launched in any direction, its
initial flight direction can be optimally chosen.

The purpose of this paper is to find the optimal planar interception
laws for maneuvering targets with a given final interception direction
for either a given or a free initial interceptor flight direction. The
case of a free final interception direction, considered previously in
Refs. 8 and 9, will appear as a particular case of this more general
solution.

In the next section the interception problem treated in this paper is
presented. The solution to this problem is then derived in Sec. Ill, and
some special interception scenarios are treated in Sec. IV. Numerical
examples that demonstrate the trajectories obtained by the optimal
solutions are presented in Sec. V, followed by conclusions. The
Appendix presents the detailed solutions to the planar interception
problems.

II. Problem Statement
The geometry used to define the interception problem presented in

this paper is shown in Fig. 1. The interceptor / is moving at a constant
speed V/ and can change its flight direction by applying bounded
normal acceleration \u\ < U. The target T is moving along an a
priori known trajectory with known velocity VT (t). The coordinates
(Xj, Yj) and (XT, YT) describe the location of the interceptor and
the target, respectively, relative to the origin of an arbitrary reference
coordinate system.

The interceptor equations of motion are

= Vj cos YI ,

Y, = V/siny/ ,

Interception is defined by

Xi(tf) = XT(tf)

Y,(tf) = TfT(tf)

(1)

(2)

(3)

(4)

(5)

In addition, the final interception geometry is specified by defin-
ing the final approach angle, i.e., the final flight-path angles of the
interceptor and the target are related by

cos[y/(f/) - Yr(tf)] = cos r/ (6)
1273
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Fig. 1 Interception geometry.

where F/ is the required final approach angle. For example, F/ = n
represents a head-on interception. The cosine in Eq. (6) introduces
the symmetry around the head-on direction and solves the 2;r an-
gle ambiguity. Since the target trajectory is assumed to be known,
XT(tf), YT(tf), and yr(f/) in Eqs. (4-6) are known functions
of time.

The problem is to find u(t), the control input time history, so that
Eqs. (1-6) are satisfied and the performance index /, defined by

J =ktf if.z Jo
(t)dt (7)

is minimized while intercepting a target with a known trajectory.
In the above formulation, the normal acceleration of the intercep-

tor is not constrained but is limited to realistic values by the second
term of the performance index J and is controlled by the size of
the weighting factor k. In general, larger k cause larger \u(t)\. For
aerodynamically controlled interceptors, this term can also be inter-
preted as the energy required to overcome induced drag.

III. Optimal Planar Interception Solution
To construct the optimal solution, an additional variable x is

defined as

i=k + \u\ x(0) = 0 (8)

Then the performance index of Eq. (7) becomes

(9)

The optimization problem is solved by the maximum principle.2
The Hamiltonian H for the system defined by Eqs. (1-3), (8), and
(9) is

= XXVI cos YI + Ay Vj sin YI + Ay
Vi

k + -u (10)

where AX , Ay , Ay , and Xx are the adjoint variables. The Hamiltonian
is constant since it is not an explicit function of time. The necessary
conditions for an optimal solution are

A.y =0

Xy = AX Vj sin YI — Ay Vj cos y/

(U)

(12)

(13)

(14)

(15)

i.e., AX, A K , and Xx are constant along the optimal trajectory. The
boundary conditions of the adjoint variables are determined by the
transversality conditions and depend on the state boundary condi-
tions. For that, the endpoint function for the minimization problem
is defined by the performance index of Eq. (9) and the boundary
conditions of Eqs. (4-6) as

0= - Xf + vx(Xff - XTf) + vY(YIf - YTf)

+ vy[cos(y7/ - YTf] -cosT/] (16)

where vx, VY, and vy are unknown constants. The transversality
conditions are

X x ( f / ) = <DX/ = -1 (17)

Ax(f/) = Ox7/ = vx (18)

A.y(fy) = 4>r = Vy (19)

XY(tf) = 4>y// = -vysin(y7/ - yTf) (20)

and
dXTf dYT

8tf'*/ 01 f
 Y v J "}J dtf

Using Eqs. (18-20) in the last equation leads to

Hf = AX Vjy cos yjy + Ay VTf sin yr/ + Ay/ct>r/

where, from Fig. 1,

(21)

(22)

dX Tf

dtf = Vr/ cos Yrr -r-^ = Vr/ sin yTj

and

l f dtf

Since the target trajectory is known, VT, YT, and thus COT are known
functions of time.

The constants AX and Ay are transformed to

AX — Ar COS#, Ay :

where Ar = V(^x + ^r) — ̂  an(l ^ — t;

definitions, Eq. (13) can be rewritten as

Ay ^̂  —Ar I

and Eq. (22) becomes

(23)

. Using these

(24)

(25)

From Eq. (17), Ax = -1 Vf, which is then used in Eq. (15) to
obtain the optimal control input:

(26)

Substituting Eqs. (23) and (26) into Eq. (10), the Hamiltonian
becomes

U = \rV, cos(0 - y/) + - k

Evaluating this equation at t = t f , Hf is expressed as

Equating Eqs. (25) and (28), Ar is obtained:

Vr/cos(6» -

(27)

(28)

(29)

If the denominator on the right-hand side equals zero, the numerator
of this term provides a quadratic equation for Ay/.

Since, as stated before, the Hamiltonian is constant along the op-
timal trajectory, equating Eqs. (27) and (28), Ay can be expressed as

A2 = 2Ar V/[cos(0 - Yif) ~ cos(<9 - y/)] + A.Yf (30)
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Using Eq. (30), the optimal control law given in Eq. (26) is expressed
as

- 2A.r V/[cos(0 - ylf) - cos(0 -

sign(«*) = sign(A.y)

(31)

(32)

Thus, u* depends on one time-varying variable only, the interceptor
flight-path angle y/, and is defined by the unknown constants 0,
Xr, A.y/, and ylf. Here, A r , given in Eq. (29), depends on the un-
known constants 0, A.y/, ylf and the target parameters at the final
time (VT/» Xr/» and o>7y). Since the target trajectory is assumed to
be known, the latter depend on tf only. Thus, A,r and the optimal
control depend on the three constants 0, A,y/, and ylf and the in-
terception time tf. If these constants were known, the interceptor
equations of motion (1-3) could be integrated. The formal solution
of the interceptor trajectory, together with the interception boundary
conditions in Eqs. (4-6) and an additional implicit relation for tf
will provide the necessary algebraic equations for these unknown
parameters. In cases where A,y/ can be solved analytically, i.e., when
the denominator on the right-hand side of Eq. (29) equals zero, the
four unknowns of these equations will be 0, X r , y7/, and tf.

To integrate the equations of motion, the sign of the optimal con-
trol has to be determined. In general, any number of sign switches
in the optimal control may exist along the extremal path. In prac-
tice, it is reasonable to assume that the optimal solution will be one
of the following: 1) a single-turn maneuver obtained by a constant
sign controller or 2) a two-turn maneuver, which involves one sign
change in the control input, resulting in an S-shape trajectory. These
two cases will be referred as NS (no switching) and S (switching),
respectively. The optimal solution is selected by comparing the val-
ues of the performance indices in these two cases.

The equations will now be integrated for the two possible
solutions.

A. NS-Maneuver Solution
The control function u* does not vanish along an optimal trajec-

tory, which also implies that

yj ^ 0 Vt (33)

Substituting the optimal control of Eq. (31) into the dynamics of
Eq. (3) yields

A r r , , , ^
y,2 - 2~[cos(0 -Yif}- cos(0 - y,)] + -ft (34)

It is interesting to note that when Xr = 0, the optimal control is
constant, leading to a constant rate of turn and a circular interception
trajectory. This simple case is treated separately at the end of this
section, and thus in the sequel it is assumed Xr > 0.

Equation (34) is a first-order differential equation with only one
dependent variable, the flight-path angle y/, and thus it can be solved
by separation of variables. For that, the following state transforma-
tion is introduced:

with the boundary conditions on

(35)

(36)

(37)

With this state transformation and the assumption in Eq. (33), the
differential equation (34), after some rearrangement, becomes

where

C = sign(w*)>

(38)

(39)

This equation can be directly integrated from t = 0 and ̂  = fa
to t = tf and •(// = T/f/.11 The integration results depend on the
sign of the sin2 tyf — X2

yf /4Xr V? term in the denominator, leading
to three possible solutions that correspond to the cases where this
term is positive, zero, or negative. The integration results, presented
in Appendix A, provide a relation between the final time tf and the
unknowns 0, Xy/, and y7/, involving elliptic integrals of the first
kind, which formally can be stated as

tf=T(0^YryIf) (40)

Since ylf is a function of the interception time through the constraint
equation (6), Eq. (40) is only implicit in tf, and thus the latter cannot
be evaluated explicitly using this equation.

Equations (1) and (2), after replacing ty for y/ and for the in-
dependent variable t by using Eqs. (35) and (38), respectively, are
rearranged to yield

CV/cos(0-2VO

CV/sin(0-2T/r)

- sin *rV?)|

(41)

(42)

The state variables Xj and Yj can now be integrated from Xj (0) =
X/0, Yj (0) = Y/Q, and ty = f a , up to their final values at tf as stated
in Eqs. (4) and (5), X/(r/) = Xr/, Y t ( t f ) = YTf, and $ = V/
to yield

XTf = X/0 + Vj(A cosO + B sin0) (43)

YTf = YJQ + Vj (A sin 0 - B cos 0) (44)

where A and B can be evaluated in terms of elliptic integrals of the
first and second kind and the constants 0, A.y/, and y7/, or formally,

A = A(0,kYryIf) (45)

B = B(9^YryIf) (46)

A complete derivation of the above relations is presented in
Appendix A.

The unknown parameters 0, Xy/, y7/, and tf are obtained from a
numerical solution of the four nonlinear algebraic equations: three
boundary conditions in Eqs. (6), (43), and (44) and the intercep-
tion time equation (40). With these parameters solved, the optimal
control is obtained through Eq. (31) and its sign equals the sign

For targets flying at constant flight-path angles, y7/ is given a
priori by Eq. (6) and does not depend on the interception time. In
these cases, tf is explicit in 0 and Ay/, which are then determined
by the two interception conditions.

B. S-Maneuver Solution
The sign of the optimal control input changes at some switching

time ts, i.e., it becomes zero at that time, u*(ts) — 0, and so does
the adjoint variable Xy:

A,yfe) = 0 (47)

With this assumption, Eq. (30) for A.y, evaluated at ts, is rearranged
to yield

2V7
3[cos(0-y7,)-cos(0-y7/)]

(48)

where yls denotes the interceptor flight-path angle at time ts. Equat-
ing this equation to (29), a quadratic equation for Xy/ is obtained.

Using Eq. (48), the optimal control can be expressed as

w*2 = 2V7Xr[cos(0 - y/,) - cos(0 - y/)] (49)
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and the equation for y/ becomes

y? = 2^-[cos(0 - yls) - cos(0 - y/)] (50)

To integrate Eq. (50), the state transformation of Eq. (35) is per-
formed to yield

C
d t = - — d i / / (51)

where

(52)

(53)

By assumption, the sign of u* and therefore the sign of C change
at ts. Thus Eq. (51) is integrated in two parts: first, from t = 0 and
T//" = -\l/() to t = ts and T//- — ̂ y, and then from that time to t = tf
and V = T/^/- As in the NS case, the integration results (presented in
Appendix B) provide an implicit relation between tf and the three
unknowns 0, y/,, and ylf. The first part of the integral (from T^O to
•tys) is the switching time ts expressed in terms of these constants.

Now the transformation equation (35) together with Eq. (51) is
used to rearrange the dynamics equations (1) and (2):

(54)

AY, = -
CV, sinffl - 2VQ (55)

which also are integrated in two parts. The integration results, pre-
sented in Appendix B, are used in the interception boundary con-
ditions of Eqs. (4) and (5), as before. The resulting two nonlinear
algebraic equations together with the implicit equation for tf pro-
vide three implicit algebraic equations for the three unknowns 0,
y/j, and yif (or tf), and they have to be solved numerically, similar
to the NS solution. These parameters determine the time history of
the optimal control input through Eq. (49).

The sign of the optimal control equals the sign of Ay , which is
obtained from Eq. (24), repeated here for convenience:

iy = — Xr Vj sin(0 — y/)

Since, by assumption, Ayfe) = 0, the sign of XY for t < ts is opposite
to the sign of the derivative iy at ts. Thus, since, by definition,
Xr > 0, the sign of the optimal control w* for that time interval is
given by

sign[M*(r)] = sign [sin (0 - y/,)] for t < ts (56)

and is opposite in sign for t > ts. Note that this equation does not
add additional unknowns and depends on the same parameters 0
andy /0.

IV. Special Cases
Two special cases of planar interception are discussed in this

section: a case for which the final flight-path angle is free and a case
for which the initial flight-path angle is optimally chosen. These
two problems can be easily solved using the results of the previous
section.

A. Free77/

This problem was solved in Ref. 8 for a maneuvering target and
in Ref. 9 for a nonmaneuvering target. In both cases relative coor-
dinates were employed.

The results obtained in this work, expressed in absolute coordi-
nates, can be easily reduced to the solutions obtained in Refs. 8 and 9.
Since yjf is free, the transversality condition implies that XYf = 0.

Using this boundary condition in Eqs. (29-31), the optimal control
is expressed as

Vr/cos(0 - Y T f ) - V/cos(0 - y l f )

x [cos(0 - y/) - cos(0 - ylf)] (57)
which is identical to the result in Ref. 8. Algebraic manipulation
shows that the same result was obtained in Ref. 9.

B. Optimal 7/0
In this problem the initial flight-path angle y/0 is not known,

whereas ylf is specified as before in Eq. (6).
Since the initial value of y/ is not specified and has to be chosen

optimally, the initial value of Xy is

Ay(0) = 0 (58)

Using this boundary condition and evaluating Eq. (30) at t — 0
yields

— _________ _________
2V/[cos(0-y /0)-cos(0-y7/)]

(59)

As in the S case of the previous section, equating this result to
Eq. (29) provides a quadratic equation for A.y/ , where the unknown
constants are 0, y/0, y//? and tf. In this case the optimal control is
given by

w*2 - 2A,r V,[cos(0 - y/0) - cos(0 - y/)] (60)

and the optimal trajectory equations can be integrated using the
same state transformation of Eq. (35). The integration results are
presented in Appendix C and provide four implicit nonlinear alge-
braic equations for the unknowns 0, y/0, yjf, and tf.

To perform this integration, it is assumed that the optimal solution
involves a turn in one direction only, i.e., y/ and thus w* ^ 0 except at
the initial time. The sign of the optimal control is determined by the
sign of Xy, Eq. (32), and is obtained from Eq. (24). From the initial
condition Ay (0) — 0 it is concluded that the sign of XY and thus the
sign of the optimal control u* equal the sign of iy at the initial time
and can be obtained by evaluating the above equation at t = 0:

sign(w*) = -sign[sin(0 - y/0)] (61)

For the case where both the initial and final flight-path angles are
free and energy only is minimized (k = 0), from Eq. (29), Xr = 0
and consequently the optimal trajectory is a straight line.

V. Examples
Interception trajectories obtained using the optimal control law

derived in the previous sections are presented here. In the first two
examples, the target is moving along a circular path at a constant
velocity and a constant rate of turn yT = 4 deg/s. The interceptor-
target velocity ratio was set to Vj/VT — 1.25. The interceptor is
fired from the origin of the reference system along the y axis and a
head-on interception is required, i.e., y/0 = 90 deg and Fy = 180
deg. Two different values of the weight factor k in the performance
index J Eq. (7) are examined: k = 8000 and k = 3500. The former
expresses a case for which a larger emphasis on the interception
time is specified relative to the latter. In addition, the optimal y/0
interception problem is solved for each k.

The interceptor and target trajectories for the k = 8000 example
are presented in Fig. 2, showing the NS and S solutions and the
solution for optimal y/0, which in this case is obtained for y/0 =
—8.3 deg. The head-on interception requirement is met by all the
solutions. The interceptor-target acceleration ratios as a function
of time are given in Fig. 3, showing that the control input of the S
solution changes sign at t = 21A s. The performance indices are
normalized by the value of J for the optimal y/0 case, JQpt. In this
example the performance index of the S solution is lower than that
of the NS solution and thus the S maneuver is chosen as the optimal
solution. In these figures it can be seen that the interception time,
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Interceptor
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o = 90.0 deg, t f = 42.11 sec, S Solution
o = 90.0 deg, t f = 84.91 sec, NS Solution

o = -8.3 deg, t f = 40.18 sec, Optimal YO Solution

Fig. 2 Example 1: Trajectories of head-on interception with 7/0 = 90
deg and optimal 7/0 = —8.3 deg. o, *: Launch and intercept points,
respectively.

90.0 deg, J /J^ = 1.68, S Solution

: Yo = 90-P&£ J/J^ = 2.Q&; NS Solution'
: YO = -8.3 deg, Optimal YO Solution with J

10 20 30 40 50 60
Time (sec)

80 90

Fig. 3 Example 1: Interceptor- target acceleration ratio for head-on
interception with 7/0 = 90 deg and optimal 7/0 = —8.3 deg for k = 8000.

the maximum control input, and of course the performance index of
the solution with optimal y/0 are lower compared to the case with
specified y/0 = 90 deg.

In the second example the emphasis on tf in the performance
measure is reduced by setting k = 3500. The trajectories and the
acceleration ratios are very similar to those of the first example.
However, the performance index is different, due to the different
penalty on the interception duration. The cost ratio for the NS case
is ///opt = 1-84 and for the S case J/Jopt = 2.25, where /opt is
the performance measure of the optimal y/0 = —10.9 deg solution.
Hence, the optimal solution for this example is the NS maneuver.
It should be noted that, in practice, the nominal value of the cost
function is of less importance, and the selection of the preferred
solution should be based on the nature of the results.

In an additional example, head-on optimal interception of a bal-
listic missile in the boost phase is computed. In computing the target
trajectory, constant thrust and constant turn rate are assumed. The
missile is launched vertically while the interceptor is fired horizon-
tally. The interception trajectory obtained using the optimal control
law, which resulted in an S-type maneuver, is presented in Fig. 4.
Also shown is the trajectory obtained for an interceptor fired at an
optimal y/0 = 43.4 deg. Although the intercept time of the latter is
longer, the performance index obtained for this case is smaller by
13% compared to the performance index for the y/0 = 0 deg case.

It should be pointed out that the required head-on interception
could not be obtained using guidance laws such as pure proportional
navigation, and thus the optimal solutions presented in this work
should be used when the interception geometry is prescribed.

3.5

3

2.5

2

1.5

M 1

0.5

0

-0.5

-1

-1.5

Interceptor

Target

0.0 deg, t f = 46.99 sec, S Solution

43.4 deg, t f = 48.13 sec, Optimal YO Solution

Fig. 4 Example 3: Trajectories of head-on interception of a ballistic
target at boost with 7/0 = 0 deg and optimal 7/0 = 43.4 deg. o, * : Launch
and interception points, respectively.

VI. Conclusions
In this paper, interception laws for maneuvering targets with pre-

determined trajectories were presented. The interception problem
included a requirement on the interception geometry, thus imposing
terminal boundary conditions on the interceptor flight-path angle.
Analytical solutions of this problem were derived, where the op-
timal control law is expressed as an explicit function of the cur-
rent value of the flight-path angle and depends on four parameters:
three constants and the optimal interception time. These parame-
ters are obtained by numerically solving four nonlinear algebraic
equations, derived from an analytical solution of the equations of
motion, while satisfying the necessary conditions and the terminal
constraints. Multiple solutions exist, which depend on the number of
sign changes in the control function during the intercept. The opti-
mal solution is the one that renders the smallest cost. In practice, it is
reasonable to assume that the control will switch sign no more than
once along the trajectory. With this assumption, optimal trajectories
were computed for several representative examples with head-on
interception requirements. Solutions with optimal initial conditions
and thus superior performance were presented for cases where the
interceptor initial flight-path angle can be freely assigned.

Appendix A: Analytic Solution for NS Maneuver
The NS maneuver is characterized by a control input that does

not become zero along the optimal solution. The three differential
equations that describe this solution are

C

^/)l
(Al)

(A2)

(A3)

where

C = sign(w*)v/V7A, (A4)

and ^ was defined in Eqs. (35-37). The limits of integration are

t = 0 =» t = tf

~ *L (A5)
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The analytical integration results in explicit nonlinear relations
between t f , XIf, and YIf and parameters describing the optimal
interception solution, i.e., 0, \2

Yf , and ylf . The solutions for XIf and
YIf have the form given in Eqs. (43) and (44).

The integration results depend on the sign of the sin2 ^y —
X^ /4Xr V? term in the denominator, leading to three possible solu-
tions denoted by NS+ , NS0, and NS_ . In addition there is a constant
rate-of-turn solution, denoted by NSC below.

Case NS+ : sin2 ̂ / > A. ̂  / (4Ar vf) . From Eq. (31), the condition
for positive u*2 is

IDAN, GOLAN, AND GUELMAN

Case NSC: Xr = 0. In this case the optimal control is constant:

min sin O, sin > sin "ft ~ 34Ar K j

The integration results are11

tf+ = C[F(af+,m+) - F(aQ+tm+)]

A+ = tf+ -2C[E(af+,m+) - E(aQ+,m+)]

B =

where

. _«0+ = sin

. _a f , = sin

m+

(A6)

(A7)

(A8)

(A9)

(A10)

(All)

(A12)

Here, F is the elliptic and K is the complete elliptic integral of first
kind; E is the elliptic and E is the complete elliptic integral of the
second kind.

Case NS()\ sin2 ^f = A2 /(4Ar V7
3). In this case the solution is11

(A13)

(A14)

(A15)

(A16)

O = '/o + 2C(cos Vo - cos i/rf)

CaseNS,: sin2 ̂  < A,2 /(4A.r V7
3). Define

— sin2 i//f > Q

to obtain the solution11

t_,m-)-F(af_tm-)] (All)

{ 2
—— [£(«/_,m_)-E(a0 , m _ )m_

ysin2 •

where

«o_ = sin
+ J2

,/sin2 T/ry H- J2

(A18)

(A19)

(A20)

(A21)

(A22)

M* = ^Yf/vi (A23)

and thus the equations of motion (1-3) can be easily integrated to
obtain

= c(yif - x/0)
+ CVj( sin Yif ~ sin y/0)

YIf = YIo +CV/(cosy / 0 -cosy7/)

X]f =

where

(A24)

(A25)

(A26)

(A27)
y/

Appendix B: Analytic Solution for S Maneuver
In the S-maneuver solution the optimal control input is chang-

ing its sign at the switching time ts. The three equations that are
integrated to obtain the solution are

df = -
-/ |sin2T/^ — sin2 ^.y|

— sin

where

(Bl)

(B2)

(B3)

(B4)

The sign on the right-hand side of these equations changes at rv ,
and thus the integration is performed in two parts: first integrate
from t = 0 and ̂  = V^o to t = ts and \// = fa , where the optimal
control and thus Ay become zero. The final time of this part is the
switching time ts of the S maneuver. Then integrate the equations
with an opposite sign from t = ts and i/f = fa to t = tf and
•(/f = \/Sf. Again, the interception location (Xif,Yif) has the form
given in Eqs. (43) and (44).

The condition for positive w*2 is [see Eq. (49)]

m i n s i n , sin > sin2 fa (B5)

and the integration results are11

ts = C[K(cos fa) - F(a0, cos fa)] (B6)

tf = C[2K(cos fa) - F(«0, cos fa) - F(af, cos fa)] (El)

A = tf - 2C[2E(cos fa) - E(a0, cos fa)

-E(af,cosfa)] (B8)

B = 2C[^/sin2 i/^o - sin2 fa + yW $f - sin2 fa] (B9)

where

. _a() = sin

. _af = sin

cos fa

cos fa

(BIO)

(Bll)
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Appendix C: Analytic Solution—Optimal 7/0
To obtain the analytic solution to the interception with opti-

mal initial flight-path angle y/0, three differential equations are
integrated:

where

-sin

- sin

(Cl)

(C2)

(C3)

where

C = sign(w*)A/Ar (C4)
The limits of integration are similar to those specified in Eqs. (A5)
and Xif and YIf are expressed as in Eqs. (43) and (44), respectively.

The condition to ensure positive w*2 in Eq. (60) is

sin2 tyf > sin2 ^r0

and the solution is given by11

tf = C [ F ( a f , cos Vo) - K(cos fa)]

A = tf- 2C[E(af, cos Vo) - E(cos ^o)

B = -2Cv/sisin - sin

(C5)

(C6)

(C7)

(C8)

. _i COST///
af = sin ——-+-

cos T/f0
(C9)
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